精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

【答案】(1)见解析(2)

【解析】

试题分析:(1)先求函数导数,再按导函数零点讨论:若,无零点,单调;若,一个零点,先减后增;若,一个零点,先减后增;(2)由单调性确定函数最小值:若,满足;若,最小值为,即,最小值为,即,综合可得的取值范围为.

试题解析:(1)函数的定义域为

①若,则,在单调递增.

②若,则由.

时,;当时,,所以单调递减,在单调递增.

③若,则由.

时,;当时,,故单调递减,在单调递增.

(2)①若,则,所以.

②若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时,.

③若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即.

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.

(Ⅰ)试求的函数关系式;

(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|x2x12≤0}B{x|m+1≤x≤2m1}

1)当m3时,求集合AB

2)若ABA,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=,则在区间(-2,6)上关于x的方程f(x)-log8(x+2)=0的解的个数为( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 相交于点,点在线段上,,且平面

(1)求实数的值;

(2)若, 求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公园内的人工湖上有一个以点为圆心的圆形喷泉,沿湖有一条小径,在的另一侧建有控制台之间均有小径连接(小径均为直路),且,喷泉中心点距离60米,且连线恰与平行,在小径上有一拍照点,现测得米, 米,且.

(I)请计算小径的长度;

(Ⅱ)现打算改建控制台的位置,其离喷泉尽可能近,在点的位置及大小均不变的前提下,请计算距离的最小值;

(Ⅲ)一人从小径一端处向处匀速前进时,喷泉恰好同时开启,喷泉开启分钟后的水幕是一个以为圆心,半径米的圆形区域(含边界),此人的行进速度是米/分钟,在这个人行进的过程中他会被水幕沾染,试求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

)当时,求函数的单调区间.

(Ⅱ)当时,,求的取值范围.

查看答案和解析>>

同步练习册答案