精英家教网 > 高中数学 > 题目详情
已知圆x2+y2-4x+4y+8-k=0关于直线x-y-2=0对称的圆是圆C,且圆C与直线3x+4y-40=0相切,求实数k的值.
分析:先求圆x2+y2-4x+4y+8-k=0关于直线x-y-2=0对称的圆,只需求出圆心关于直线x-y-2=0对称点的坐标,因为圆C与直线3x+4y-40=0相切,再利用圆心到直线的距离等于半径就可求出参数的值.
解答:解:由题意知:(x-2)2+(y+2)2=k,若圆心(2,-2)关于直线x-y-2=0对称的点C为C(a,b)
b+2
a-2
=-1
a+2
2
-
b-2
2
-2=0
解得 
a=0
b=0
…(6分)
∴圆C为:x2+y2=k,
又圆C与直线3x+4y-40=0相切,
|40|
32+42
=
k
,解得k=64.      …(12分)
点评:本题的考点是直线与圆的位置关系,主要考查圆关于直线对称圆的求法,考查直线与圆相切,关键是求圆心关于直线的对称点的坐标,利用直线与圆相切时,圆心到直线的距离等于半径求解,计算需要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知圆x2+y2=4,过A(4,0)作圆的割线ABC,则弦BC中点的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4上恰有两个点到直线4x-3y+c=0的距离为1,则实数c的取值范围是
(-15,-5)∪(5,15)
(-15,-5)∪(5,15)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=4内一定点M(0,1),经M且斜率存在的直线交圆于A(x1,y1)、B(x2,y2)两点,过点A、B分别作圆的切线l1,l2.设切线l1,l2交于点Q.
(1)设点P(x0,y0)是圆上的点,求证:过P的圆的切线方程是
x
 
0
x+y0y=4

(2)求证Q在一定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有三个点到直线12x-5y+c=0的距离为1,则实数c的值是
±13
±13

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=4及点P(1,1),则过点P的直线中,被圆截得的弦长最短时的直线的方程是
x+y-2=0
x+y-2=0

查看答案和解析>>

同步练习册答案