精英家教网 > 高中数学 > 题目详情

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin(θ﹣ ).
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面ρ≤4sin(θ﹣ )的公共点,求 x+y的取值范围.

【答案】
(1)解:因为圆C的极坐标方程为ρ=4sin(θ﹣ ),

所以ρ2=4ρ( sinθ﹣ cosθ),

所以圆C的直角坐标方程为:x2+y2+2x﹣2 y=0


(2)解:设z= x+y

由圆C的方程x2+y2+2x﹣2 y=0,可得(x+1)2+(y﹣ 2=4

所以圆C的圆心是(﹣1, ),半径是2

代入z= x+y得z=﹣t

又直线l过C(﹣1, ),圆C的半径是2,

由题意有:﹣2≤t≤2

所以﹣2≤t≤2

x+y的取值范围是[﹣2,2]


【解析】(1)利用极坐标与直角坐标的方程互化的方法,可得圆C的直角坐标方程;(2)将 代入z= x+y得z=﹣t,又直线l过C(﹣1, ),圆C的半径是2,可得结论.
【考点精析】利用直线的参数方程对题目进行判断即可得到答案,需要熟知经过点,倾斜角为的直线的参数方程可表示为为参数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义“等和数列”:在一个数列中,如果每一个项与它的后一项的和都为同一个常数,那么这个数列就叫做“等和数列”,这个常数叫做公和.已知数列{an}是等和数列,且a1=2,公和为6,求这个数列的前n项的和S=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某班50人进行智力测验,其得分如下:

48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,55,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.

(1)这次测试成绩的最大值和最小值各是多少?

(2)[30,100)平分成7个小区间,试画出该班学生智力测验成绩的频数分布图.

(3)分析这个频数分布图,你能得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,则a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 为等边三角形, 分别为的中点.

(1)求证: 平面.

(2)求证:平面平面.

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣2a|,a∈R.
(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;
(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)= (e为自然对数底数),若在[1,e]上至少存在一点x0 , 使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2kx﹣4,若对任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线 =1(a>0,b>0)的左右焦点分别为F1 , F2 , |F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是(
A.3
B.2
C.
D.

查看答案和解析>>

同步练习册答案