精英家教网 > 高中数学 > 题目详情

在△ABC中,已知数学公式数学公式,则cosC的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式数学公式
  4. D.
    数学公式
A
分析:在三角形中根据所给A和B角的三角函数值,求出A的正弦值和B的余弦值,根据A+B+C=180°,用诱导公式求出C的余弦值,解题过程中注意B的余弦值有两个,根据条件舍去不合题意的.
解答:∵cosA=,A∈(0,π),

,B∈(0,π),
∴cosB=±
当∠B是钝角时,A与B两角的和大于π,

∴cosC=-cos(A+B)=
故选A
点评:本题借助于三角形内角的关系,用诱导公式和同角三角函数之间的关系解决问题,本题是一个易错题,易错的地方是角B的余弦值,解题时往往忽略三角形内角和而盲目解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知高AN和BM所在直线方程分别为x+5y-3=0和x+y-1=0,边AB所在直线方程x+3y-1=0,求直线BC,CA及AB边上的高所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,则三角形一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知b=1,c=3,A=120°,则a=
 

查看答案和解析>>

同步练习册答案