精英家教网 > 高中数学 > 题目详情
已知平面α⊥平面β,交于直线l,且直线a?α,直线b?β,则下列命题错误的是(  )
A、若a∥b,则a∥l或b∥l
B、若a⊥b,则a⊥l且b⊥l
C、若直线a,b都不平行直线l,则直线a必不平行直线b
D、若直线a,b都不垂直直线l,则直线a必不垂直直线b
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:由平面α⊥平面β,交于直线l,且直线a?α,直线b?β,知:
若a∥b,则a∥l且b∥l,故A正确;
若a⊥b,则a与l不一定垂直且b与l不一定垂直,故B错误;
若直线a,b都不平行直线l,则由平行公理得直线a必不平行直线b,故C正确;
若直线a,b都不垂直直线l,则由线面垂直的性质得直线a必不垂直直线b,故D正确.
故选:B.
点评:本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(1,1)是函数f(x)=lnx+
1
2
ax2-(a+1)x的图象上一点.
(1)求f(x)的单调区间.
(2)证明:存在a∈(1,+∞),使得f(a)=f(
1
3
);
(3)记函数y=f(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x0,y0),使得①:x0=
x1+x2
2
;②:曲线C在点M处的切线平行于直线AB,则称函数f(x)存在“中值相依切线”,试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F,过F的直线l交双曲线的渐近线于A,B两点,且与其中一条渐近线垂直,若
AF
=4
FB
,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果|2x+1|+2|x-a|≥5的解集为R,则正数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
f(x+3)
,当1≤x<3时,f(x)=(
1
2
x,则f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行图中的程序框图,那么最后输出的正整数i=(  )
A、43B、44C、45D、46

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,3a1
1
2
a3,2a2
成等差数列,则
a2011+a2012
a2009+a2010
=(  )
A、3或-1B、9或1C、1D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{xn}对任意的n∈N*,都有xn-2xn+1+xn+2<0成立,则称数列{xn}为“亚等差数列”,设数列{an}是各项都为正数的等比数列,其前n项和为Sn,且a1=1,S1+S2+S3=
17
4

(1)求证:数列{Sn}是“亚等差数列”;
(2)设bn=(1-nan)t+n2an,若数列b3,b4,b5…,bm是“亚等差数列”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人玩数字游戏,甲让乙在区间[0,9]上任意一个数x,若x满足不等式1≤log2x≤2,就称甲乙俩人“心有灵犀一点通”.则甲乙俩人“心有灵犀一点通”的概率为(  )
A、
1
9
B、
2
9
C、
1
3
D、
4
9

查看答案和解析>>

同步练习册答案