精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像相交于点两点,若动点满足,则点的轨迹方程是______.

【答案】x12+y124

【解析】

函数fx1,可得fx)的对称中心为Q11).直线gx)=mx+1mymx1+1,经过定点Q11).可得两图象相交的两点AB关于点Q对称.设Ax0y0),B2x02y0).设Pxy).利用动点P满足||4,即可得出.

函数fx1,可得fx)的对称中心为Q11).

直线gx)=mx+1mymx1+1,经过定点Q11).

则两图象相交的两点AB关于点Q对称.

Ax0y0),B2x02y0).设Pxy).

22x22y).

∵动点P满足||4,∴4

化为:(x12+y124

故答案为:(x12+y124

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数恰有一个零点,求实数的取值范围;

(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形ABDC中,.

1)若S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由;

2)直角梯形ABDC绕直线AC所在直线旋转一周所得几何体名称是什么?并求出其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:

分组

频数

4

8

15

22

25

14

6

4

2

(1)根据所给数据将频率分布直图补充完整(不必说明理由);

(2)根据频率分布直方图估计本市居民月均用水量的中位数;

(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解人们对延迟退休年龄政策的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持延迟退休的人数与年龄的统计结果如下:

(I)由频率分布直方图估计年龄的众数和平均数;

(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对延迟退休年龄政策的支持度有差异;

参考数据:

(III)若以45岁为分界点,从不支持延迟退休的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,给出下列曲线方程:(1;(2;(3;(4,在曲线上存在点满足的所有曲线是(

A.1)(2)(3)(4B.2)(3

C.1)(4D.2)(3)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数与复平面上点对应.

1)若是关于的一元二次方程的一个虚根,且,求实数的值;

2)设复数满足条件(其中、常数),当为奇数时,动点的轨迹为,当为偶数时,动点的轨迹为,且两条曲线都经过点,求轨迹的方程;

3)在(2)的条件下,轨迹上存在点,使点与点的最小距离不小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求实数m的值;

2)若l1l2,求l1l2之间的距离d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数的图象上任意两点,若的中点,且的横坐标为

1)求

2)若,求

3)已知数列的通项公式),数列的前项和为,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案