精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ex+3,则f(x)在x=0处切线的方程是(  )
A.x-y+4=0B.x+y-4=0C.4x-y+4=0D.4x+y-4=0

分析 求出函数的导数,求得切线的斜率和切点,由斜截式方程可得切线的方程.

解答 解:函数f(x)=ex+3的导数为f′(x)=ex
即有f(x)在x=0处切线的斜率为k=e0=1,
切点为(0,4),
则f(x)在x=0处切线的方程为y=x+4,
故选:A.

点评 本题考查导数的运用:求切线方程,正确求导和运用直线方程的形式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}是等差数列,a2和a2014是方程5x2-6x+1=0的两根,则数列{an}的前2015项的和为1209.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a,b∈R,且ab>0,则“a=b”是“$\frac{b}{a}+\frac{a}{b}≥2$等号成立”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O为坐标原点,点A(-1,2),若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是(  )
A.[-1,0]B.[0,1]C.[1,3]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=ax3+2bx2-4x在x=-2与$x=\frac{2}{3}$处取得极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2+2x+4y-4=0,若圆上恰有3个点到直线y=-x+b的距离为1,则b的值为(  )
A.$3-2\sqrt{2}$B.$-3+2\sqrt{2}$C.$-3±2\sqrt{2}$D.$3±2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an},${a_n}∈{N^*}$,${S_n}=\frac{1}{8}{({a_n}+2)^2}$,求an=4n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,是一曲边三角形地块,其中曲边AB是以A为顶点,AC为对称轴的抛物线的一部分,点B到边AC的距离为2km,另外两边AC,BC的长度分别为8km,2$\sqrt{5}$km.现欲在此地块内建一形状为直角梯形DECF的科技园区.
(Ⅰ)求此曲边三角形地块的面积;
(Ⅱ)求科技园区面积的最大值.

查看答案和解析>>

同步练习册答案