精英家教网 > 高中数学 > 题目详情
18.在棱长为1的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|+|PD1|=m的点P的个数为n,则n的最大值是12.

分析 P应是椭圆与正方体与棱的交点,满足条件的点应该在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一点满足条件,由此能求出结果.

解答 解:∵正方体的棱长为1,
∴BD1=$\sqrt{3}$,
∵点P是正方体棱上的一点(不包括棱的端点),
满足|PB|+|PD1|=m,
∴点P是以2c=$\sqrt{3}$为焦距,以2a=m为长半轴的椭圆,
∵P在正方体的棱上,
∴P应是椭圆与正方体与棱的交点,
结合正方体的性质可知,
满足条件的点应该在正方体的12条棱上各有一点
满足条件.
∴满足|PB|+|PD1|=m的点P的个数n的最大值是12,
故答案为12.

点评 本题以正方体为载体,主要考查了椭圆定义的灵活应用,属于综合性试题,解题时要注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.对于给定的正整数数列{an},满足an+1=an+bn,其中bn是an的末位数字,下列关于数列{an}的说法正确的是(  )
A.如果a1是5的倍数,那么数列{an}与数列{2n}必有相同的项
B.如果a1不是5的倍数,那么数列{an}与数列{2n}必没有相同的项
C.如果a1不是5的倍数,那么数列{an}与数列{2n}只有有限个相同的项
D.如果a1不是5的倍数,那么数列{an}与数列{2n}有无穷多个相同的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\vec a=(3,-1)$,$\vec b=(1,x)$,且$\vec a⊥\vec b$,那么x的值是(  )
A.-3B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.甲乙两名篮球运动员在4场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分,s1,s2分别表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小关系是(  )
A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P(-2,2)在圆O:x2+y2=r2(r>0)上,直线l与圆O交于A,B两点.
(1)r=2$\sqrt{2}$;
(2)如果△PAB为等腰三角形,底边$AB=2\sqrt{6}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中,角A,B,C所对的边分别为a,b,c,已知sinA+sinC=psinB且$ac=\frac{1}{4}{b^2}$.若角B为锐角,则p的取值范围是(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(0,\sqrt{2})$C.$(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$D.$(\frac{{\sqrt{6}}}{2},\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前项n和为Sn,且3Sn=4an-4.又数列{bn}满足bn=log2a1+log2a2+…+log2an
(1)求数列{an}、{bn}的通项公式;
(2)若${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$,求使得不等式$k\frac{{n•{a_n}}}{n+1}≥(2n-3){T_n}$恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线mx-y+m+2=0与圆C1:(x+1)2+(y-2)2=1相交于A,B两点,点P是圆C2:(x-3)2+y2=5上的动点,则△PAB面积的最大值是3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把二项式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)8的展开式中所有的项重现排成一列,其中有理项都互不相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

查看答案和解析>>

同步练习册答案