精英家教网 > 高中数学 > 题目详情
6.如图所示的程序框图,若输入m=2015,n=2,则输出的i2的值是(  )
A.2B.-1C.4D.2015

分析 模拟执行程序框图,依次写出每次循环得到的a,i的值,当a=2015×2时a能被2整除,输出i=2,则可求i2=4.

解答 解:由程序框图知,
i=1,a=2015×1=2015,
a不能被2整除⇒i=2,
a=2015×2,这时a能被2整除,输出i=2,则i2=4,
故选:C.

点评 本题主要考察了循环结构的程序框图,模拟执行程序框图正确得到程序框图的功能是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2ekx
(Ⅰ)当k=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设g(x)=$\frac{ax}{1+{x}^{2}}$+2(a>0),且对于任意的x1,x2∈[0,2],均有g(x1)≥f(x2)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列给出的赋值语句正确的有(  )
(1)赋值语句2=A;         (2)赋值语句x+y=2;
(3)赋值语句A-B=-2;    (4)赋值语句A=A*A.
A.0个B.1个C.2个D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为$(\sqrt{2},\frac{π}{4})$,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}-\frac{{\sqrt{2}}}{2}t\\ y=\frac{1}{2}+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),点A在直线l上.
(Ⅰ)求点A对应的参数t;
(Ⅱ)若曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数),直线l与曲线C交于M、N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若($\sqrt{x}$-$\frac{2}{x}$)n的展开式中只有第4项的二项式系数最大,其展开式中的常数项为a,则a的值为60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等腰三角形的底边长为6,一腰长为12,则它的外接圆半径为$\frac{8\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式(a-b)x+a+2b>0的解是x>$\frac{1}{2}$,则不等式ax<b的解为{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么可卖出400件,如果每提高单价1元,那么销售量Q(件)会减少20,设每件商品售价为x(元);
(1)请将销售量Q(件)表示成关于每件商品售价x(元)的函数;
(2)请问当售价x(元)为多少,才能使这批商品的总利润y(元)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用[x]表示不超过x的最大整数,例如[-3.5]=-4,[2.3]=2,设函数f(x)=x-[x],则下列结论中正确的序号是③④(要求写出所有正确结论的序号)
①函数f(x)是奇函数
②函数f(x)在实数集R上是增函数
③函数f(x)的值域是[0,1)
④方程f(x)=$\frac{1}{2}$有无数个实数解.

查看答案和解析>>

同步练习册答案