分析 先求出双曲线的两条渐近线为,抛物线y2=-8x的准线为x=2,结合图象可得在点B(2,-1)时,z=|3x-4y+5|取得最大值.
解答 解:双曲线y2-$\frac{{x}^{2}}{4}$=1的两条渐近线为y=±$\frac{1}{2}$x,抛物线y2=-8x的准线为x=2.
故可行域即图中阴影部分,(含边界).
目标函数z=|3x-4y+5|的几何意义就是,可行域的点到直线3x-4y+5=0的距离的5倍:由图形可知B到3x-4y+5=0的距离最大,
故在点B(2,-1)时,最大值为:$5×\frac{|3×2+4×1+5|}{\sqrt{{3}^{2}+{4}^{2}}}$=15.
故答案为:15.
点评 本题主要考查抛物线、双曲线的标准方程,圆锥曲线的综合应用,以及圆锥曲线的简单性质,简单的线性规划问题,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1080 | B. | 480 | C. | 1560 | D. | 300 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{{a}^{2}-{x}^{2}}}{a}$ | B. | $\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$ | C. | x(a2-x2)${\;}^{-\frac{3}{2}}$ | D. | -$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com