精英家教网 > 高中数学 > 题目详情
(2013•南开区二模)已知数列{an}的前n项和为Sn,且an=
1
2
(3n+Sn)对一切正整数n成立
(1)求出:a1,a2,a3的值
(2)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(3)设bn=
n
3
an,求数列{bn}的前n项和Bn;数列{an}中是否存在构成等差数列的四项?若存在求出一组;否则说明理由.
分析:(1)由已知可得Sn=2an-3n,进而得an+1=Sn+1-Sn=2an+3,代入计算,可求a1,a2,a3的值;
(2)由an+1+3=2(an+3),可得数列{an+3}是等比数列,从而可求数列{an}的通项公式;
(3)由(2)可知bn=
n
3
an=n2n-n,由错位相减法可求数列{bn}的前n项和Bn;先假设存在,由题意可得2m+2q=2n+2p,即1+2q-m=2n-m+2p-m,推出矛盾.
解答:(1)解:由an=
1
2
(3n+Sn)可得Sn=2an-3n,故an+1=Sn+1-Sn=2an+3
∵a1=
1
2
(3+S1),∴a1=3,∴a2=9,a3=21;
(2)证明:由待定系数法得an+1+3=2(an+3)
又a1+3=6≠0
∴数列{an+3}是以6为首项,2为公比的等比数列.
∴an+3=6×2n-1
∴an=3(2n-1).
(3)解:由(2)可得bn=n2n-n,
∴Bn=1×21+2×22+3×23+…+n×2n-(1+2+3+…+n)   ①
∴2Bn=1×22+2×23+3×24+…+n×2n+1-2(1+2+3+…+n)   ②
①-②得,-Bn=2+(22+23+…+2n)+
n(n+1)
2

化简可得Bn=2+(n-1)2n+1-
n(n+1)
2

假设数列{an}存在构成等差数列的四项依次为:am、an、ap、aq(m<n<p<q)
则3(2m-1)+3(2q-1)=3(2n-1)+3(2p-1)∴2m+2q=2n+2p
上式两边同除以2m,则1+2q-m=2n-m+2p-m
∵m、n、p、q∈N*,且m<n<p<q,
∴上式左边是奇数,右边是偶数,相矛盾.
∴数列{an}不存在构成等差数列的四项.
点评:本题为数列的综合应用,考查数列的通项与求和,考查反证法的运用,由和求通项公式,错位相减法求和是解题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•南开区二模)设函数f(x)=
3
sinxcosx+cos2x+a

(1)写出函数f(x)的最小正周期及单调递减区间;
(2)当x∈[-
π
6
π
3
]
时,函数f(x)的最大值与最小值的和为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南开区二模)设函数f(x)=lnx-
1
2
ax2+x

(1)当a=2时,求f(x)的最大值;
(2)令F(x)=f(x)+
1
2
ax2-x+
a
x
(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的取值范围;
(3)当a=0时,方程mf(x)=x2有唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南开区二模)如图,F1,F2是双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南开区二模)在△ABC中,若a=2,∠B=60°,b=
7
,则BC边上的高等于
3
3
2
3
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南开区二模)在某校组织的一次篮球定点投篮测试中,规定每人最多投3次.每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分.将学生得分逐次累加并用ξ表示,如果ξ的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在A处投一球,以后都在B处投:方案2:都在B处投篮.甲同学在A处投篮的命中率为0.5,在B处投篮的命中率为0.8.
(1)当甲同学选择方案1时.
①求甲同学测试结束后所得总分等于4的概率:
②求甲同学测试结束后所得总分ξ的分布列和数学期望Eξ;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.

查看答案和解析>>

同步练习册答案