精英家教网 > 高中数学 > 题目详情
7.已知复数${z_1}=\frac{1}{2}-\frac{{\sqrt{3}i}}{2}$和复数z2=cos30°+isin30°,则z1•z2为(  )
A.1B.-1C.$-\frac{1}{2}i$D.$\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$

分析 化简复数z2为代数形式,利用复数的乘法求解即可.

解答 解:复数${z_1}=\frac{1}{2}-\frac{{\sqrt{3}i}}{2}$和复数z2=cos30°+isin30°=$\frac{\sqrt{3}}{2}$$+\frac{1}{2}i$,
z1•z2=$(\frac{1}{2}-\frac{\sqrt{3}i}{2})(\frac{\sqrt{3}}{2}+\frac{1}{2}i)$=$\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}-\frac{3}{4}i+\frac{1}{4}i$=$\frac{\sqrt{3}}{2}-\frac{1}{2}i$.
故选:D.

点评 本题考查复数的代数形式的混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=cosx最小正周期是(  )
A.1B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若3cosα+4sinα=5,则tanα=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,设P(x,y)是椭圆$\frac{{x}^{2}}{3}+{y}^{2}=1$上的一个动点.
(1)写出椭圆的参数方程;
(2)求S=x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地一天的温度(单位:℃)随时间t(单位:小时)的变化近似满足函数关系:f(t)=24-8sin(ωt+$\frac{π}{3}$),t∈[0,24),ω∈(0,$\frac{π}{8}$),且早上8时的温度为24℃.
(1)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?
(2)当地有一通宵营业的超市,为了节省开支,规定在环境温度超过28℃时,开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某个几何体的三视图如下,根据图中标出的尺寸,那么可得这个几何体最长的棱长是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,B E平分∠A BC交 AC于点E,点D在AB上,DE⊥EB,且${A}D=2\sqrt{3}$,AE=6.
(I)判断直线 AC与△BDE的外接圆的位置关系并说明理由;
(II)求EC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-a(x-1),(a∈R).
(1)讨论函数f(x)的单调性;
(2)当x≥1时,e${\;}^{a(x-\frac{1}{x})}$≥x,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}满足${a}_{1}=2,{a}_{n}=2{a}_{n-1}(n∈{N}^{*},n>1)$,则数列{log2an}的前10项和S10=(  )
A.55B.50C.45D.40

查看答案和解析>>

同步练习册答案