精英家教网 > 高中数学 > 题目详情
已知函数
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.
(1)m=1(讨论见解析);
(2)见解析.
(1)
由x=0是f(x)的极值点得f '(0)=0,所以m=1.
于是f(x)=ex-ln(x+1),定义域为(-1,+∞),
函数在(-1,+∞)上单调递增,且f '(0)=0,因此当x∈(-1,0)时, f '(x)<0;当x∈(0,+∞)时, f '(x)>0.
所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.
(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时, f(x)>0.
当m=2时,函数在(-2,+∞)上单调递增.
又f '(-1)<0, f '(0)>0,故f '(x)=0在(-2,+∞)上有唯一实根,且
时, f '(x)<0;当时, f '(x)>0,从而当时,f(x)取得最小值.
由f '(x0)=0得=

综上,当m≤2时, f(x)>0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数R).
(1)若曲线在点处的切线与直线平行,求的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若函数上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且中点为
求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex+2x2—3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;
(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是可导的函数,且对于恒成立,则(     )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是的导函数的图像,现有四种说法:

上是增函数;
的极小值点;
上是减函数,在上是增函数;
的极小值点;
以上正确的序号为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的导函数为,若,则        .

查看答案和解析>>

同步练习册答案