精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x≠0),在由正数组成的数列{an}中,a1=1,f(an)(n∈N*).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)在数列{bn}中,对任意正整数n,bn·=1都成立,设Sn为数列{bn}的前n项和,比较Sn的大小;

(Ⅲ)在点列An(2n,)(n∈N*)中,是否存在三个不同点Ak、Al、Am,使Ak、Al、Am在一条直线上?若存在,写出一组在一条直线上的三个点的坐标;若不存在,请说明理由.

解:(Ⅰ)由,得.

,即{}是以为首项,4为公差的等差数列.

=1+(n-1)×4=4n-3

∴an>0,  ∴ 

(Ⅱ)∵

=bn(4n2-1)=1,

∴Sn=b1+b2+…+bn

 

(Ⅲ)点列An(2n,)(n∈N*)中不可能有共线的三个点.

根据(Ⅰ),可得An(2n,) (n∈N*),

令x=2n,y=,则y=.(x≥2)

点(x,y)在曲线x2-y2=1(x≥2,y≥)上,

所以,An(2n,)在曲线x2-y2=1(x≥2,y≥)上,而直线方程与x2-y2=1联立组成的方程组最多有两组不同的解,所以直线与x2-y2=1最多有两个交点.

所以,点列An(2n,)(n∈N*)中不可能有共线的三个点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案