精英家教网 > 高中数学 > 题目详情

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

【答案】1)见解析(2λ

【解析】(1)证明:∵AB⊥平面BCD∴AB⊥CD.

∵CD⊥BC,且AB∩BCB∴CD⊥平面ABC.

λ(0λ1)

不论λ为何值,恒有EF∥CD.

EF平面ABCEF平面BEF.

不论λ为何值恒有平面BEF⊥平面ABC.

(2)解:由(1)知,BE⊥EF平面BEF⊥平面ACD∴BE⊥平面ACD.∴BE⊥AC.

∵BCCD1∠BCD90°∠ADB60°

BDABtan60°.

AC.

AB2AE·AC,得AE.λ.

故当λ时,平面BEF平面ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设在平面上有两个向量a=(cos 2α,sin 2α)(0≤α<π),b=,ab不共线.

(1)求证:向量a+ba-b垂直;

(2)当向量a+ba-b的模相等时,α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).
(1)若 ,求c的值;
(2)若c=5,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】静宁县是甘肃苹果栽培第一大县,中国著名优质苹果基地和重要苹果出口基地.静宁县海拔高、光照充足、昼夜温差大、环境无污染,适合种植苹果.“静宁苹果”以色泽鲜艳、质细汁多,酸甜适度,口感脆甜、货架期长、极耐储藏和长途运输而著名.为检测一批静宁苹果,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量)

[80,85)

[85,90)

[90,95)

[95,100)

频数(个)

5

10

20

15


(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对某一商品搞活动,已知该商品每一个的进价为3元,销售价为8元,每天售出的第20个及之后的半价出售.该商场统计了近10天的这种商品销量,如图所示:设为每天商品的销量,为该商场每天销售这种商品的的利润.从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,⊥平面,且四边形是平行四边形.

(1)求证:

(2)当点的什么位置时,使得∥平面,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全运会将在2017年8月在天津举行,组委会在2017年1月对参加接待服务的10名宾馆经理进行为期半月的培训,培训结束,组织了一次培训结业测试,10人考试成绩如下(满分为100分):

75 84 65 90 88 95 78 85 98 82

()以成绩的十位为茎个位为叶作出本次结业成绩的茎叶图,并计算平均成绩与成绩中位数

()从本次结业成绩在80分以上的人员中选3人,这3人中成绩在90分(含90分)以上的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,设函数,且的图象过点和点.

(Ⅰ)求的值;

(Ⅱ)将的图象向左平移)个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:

查看答案和解析>>

同步练习册答案