【题目】已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的表达式;
(2)若f(x)>a在x∈[﹣1,1]恒成立,求实数a的取值范围.
【答案】
(1)解:设f(x)=ax2+bx+c∵f(0)=0∴c=0
∴f(x)=ax2+bxf(x)+x+1=ax2+(b+1)x+1f(x+1)
=a(x+1)2+b(x+1)=ax2+(2a+b)x+a+b∵f(x+1)
=f(x)+x+1∴ax2+(2a+b)x+a+b=ax2+(b+1)x+1
∴ ∴
(2)解:f(x)>a在x∈[﹣1,1]恒成立
∴ x>a在x∈[﹣1,1]恒成立
∴ 在x∈[﹣1,1]恒成立.
∴
【解析】(1)根据函数类型设出函数的解析式,然后根据f(0)=0,f(x+1)=f(x)+x+1,建立两个等式关系,解之即可;(2)要使f(x)>a在x∈[﹣1,1]恒成立,只需研究函数f(x)在闭区间[﹣1,1]上的最小值即可,利用配方法结合二次函数的性质即可求出f(x)的最小值.
科目:高中数学 来源: 题型:
【题目】设函数f(x)= x2+ax﹣lnx(a∈R).
(1)当a=1时,求函数f(x)的极值;
(2)当a>1时,讨论函数f(x)的单调性;
(3)若对任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值﹣3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin( )>Asin( )?若存在,求出m值(或范围),若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下结论:
①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.
(3)若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线是平面内与两个定点, 的距离之积等于的点的轨迹.给出下列命题:
①曲线过坐标原点;
②曲线关于坐标轴对称;
③若点在曲线上,则的周长有最小值;
④若点在曲线上,则面积有最大值.
其中正确命题的个数为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)当a>0时,求函数f(x)的单调区间;
(2)若f(x)在[1,e]上的最小值为1,求实数a的取值范围;(其中e为自然对数的底数);
(3)若 上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2 (a∈R),且f(1)>f(3),f(2)>f(3)( )
A.若k=1,则|a﹣1|<|a﹣2|
B.若k=1,则|a﹣1|>|a﹣2|
C.若k=2,则|a﹣1|<|a﹣2|
D.若k=2,则|a﹣1|>|a﹣2|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com