精英家教网 > 高中数学 > 题目详情
正方体的截平面不可能是: (1) 钝角三角形  (2) 直角三角形   (3) 菱 形    (4) 正五边形   (5) 正六边形;    下述选项正确的是:               (    )
A. (1)(2)(5)B. (1)(2)(4)C. (2)(3)(4)D. (3)(4)(5)
B
正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形,直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形,矩形、但不可能是直角梯形(证明略);对五边形来讲,可以是任意五边形,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形)。
 选 【 B 】
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在直三棱柱ABC?A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个容器的外形是一个棱长为的正方体,其三视图如图所示,则容器的容积为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正六棱柱各棱长均为1,求一动点从A沿表面移动到点D1时最短的路程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:直线平面,如图.求证:直线与平面相交.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

底面是平行四边形的四棱锥P-ABCD,点EPD上,且PEED=2∶1.
问:在棱PC上是否存在一点F,使BF∥面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.

(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图所示,长方体ABCD-A1B1C1D1中,AB=a,BC=b,BB1=c,并且a>b>c>0.
求沿着长方体的表面自A到C的最短线路的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在长方体OABC-O1A1B1C1中,|OA|="2," |AB|=3,|AA1|=3,MOB1BO1的交点,则M点的坐标是____________.

查看答案和解析>>

同步练习册答案