精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,F1 , F2分别为椭圆 + =1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.

(1)若点C的坐标为( ),且BF2= ,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.

【答案】
(1)解:∵C的坐标为( ),

,即

∴a2=( 2=2,即b2=1,

则椭圆的方程为 +y2=1


(2)解:设F1(﹣c,0),F2(c,0),

∵B(0,b),

∴直线BF2:y=﹣ x+b,代入椭圆方程 + =1(a>b>0)得( )x2 =0,

解得x=0,或x=

∵A( ),且A,C关于x轴对称,

∴C( ,﹣ ),

=﹣ =

∵F1C⊥AB,

×( )=﹣1,

由b2=a2﹣c2

即e=


【解析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.

(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值.
(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过点,且与圆关于直线对称.

(1)求两圆的方程;

(2)若直线与直线平行,且截距为7,在上取一横坐标为的点,过点作圆的切线,切点为,设中点为.

(ⅰ)若,求的值;

(ⅱ)是否存在点,使得?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,分别是的中点.

)求异面直线所成角的余弦值.

)在棱上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量 =(2sinA,cos(A﹣B)), =(sinB,﹣1),且 =
(Ⅰ)求角C的大小;
(Ⅱ)若 ,求b﹣a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 底面底面为正方形 分别是的中点.

(Ⅰ)求证:

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

分组

频数

频率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合计

1.00

如果用分层抽样的方法从样本分数在[60,70)[80,90)的人中共抽取6,再从6人中选2,2人分数都在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心为原点,且与直线 相切.

(1)求圆C的方程;

(2)点在直线上,过点引圆C的两条切线 ,切点为 ,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分期付款方式购买家用电器一件,价格为1150元,购买当天先付150元,以后每月这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的第一个月开始算分期付款的第一个月,全部欠款付清后,买这件家电实际付款______元.

查看答案和解析>>

同步练习册答案