精英家教网 > 高中数学 > 题目详情
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是线段EF的中点.
(1)证明:CM∥平面DFB
(2)求异面直线AM与DE所成的角的余弦值.
分析:(1)设正方形的对角线AC和BD相交于点O,由条件证明MF和CO平行且相等,四边形COFM为平行四边形,故CM∥OF,再由直线和平面平行的判定定理证得 CM∥平面DFB.
(2)建立空间直角坐标系,求得点C、点A、点E、,点D、点M的坐标,可得
AM
DE
的坐标,以及|
AM
|、|
DE
|和
AM
DE
的值.再利用两个向量的夹角公式求得
AM
DE
的夹角θ 的余弦值,再取绝对值,即得所求.
解答:解:(1)设正方形的对角线AC和BD相交于点O,∵M为的中点,ACEF为矩形,故MF和CO平行且相等,
故四边形COFM为平行四边形,故CM∥OF,
而OF?平面DFB,CM不在平面DFB内,∴CM∥平面DFB.
(2)以点C为原点,CD为x轴,CB为y轴,CE为z轴,建立空间直角坐标系,则点C(0,0),点A(
2
2
,0),点E(0,0,1),
点D(
2
,0,0),点M(
2
2
2
2
,1),
AM
=(-
2
2
,-
2
2
,1),
DE
=(-
2
,0,1),|
AM
|=
2
,|
DE
|=
3
AM
DE
=1+0+1=2.
AM
DE
的夹角为θ,cosθ=
AM
DE
|AM
|•|
DE
|
=
2
2
3
=
6
3
,故异面直线AM与DE所成的角的余弦值为
6
3
点评:本题主要考查直线和平面平行的判定定理的应用,求异面直线所成的角的余弦值,两个向量的夹角公式的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广州模拟)如图所示,已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角BD折起,得到三棱锥A-BCD.
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A-BCD的体积为
6
3
,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)如图所示,已知正方形ABCD的边长为1,以A为圆心,AD长为半径画弧,交BA的延长线于P1,然后以B为圆心,BP1长为半径画弧,交CB的延长线于P2,再以C为圆心,CP2长为半径画弧,交DC的延长线于P3,再以D为圆心,DP3长为半径画弧,交AD的延长线于P4,再以A为圆心,AP4长为半径画弧,…,如此继续下去,画出的第8道弧的半径是
8
8
,画出第n道弧时,这n道弧的弧长之和为
n(n+1)π
4
n(n+1)π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:

(1)AM∥平面BDE;

(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省哈尔滨市高二下期中考试文数学卷(解析版) 题型:解答题

如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面

(2)求异面直线所成的角的余弦值。

 

查看答案和解析>>

同步练习册答案