精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,面,底面是直角梯形,侧面是等腰直角三角形.且

(1)判断的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.
(1);(2);(3).

试题分析:本题以四棱锥为几何背景考查线线垂直、线面垂直、线面平行、线线平行的判定,在解题过程中还遇到了等腰直角三角形和直角梯形以及相似三角形等基础知识,考查空间想象能力和推理论证能力.第一问,取中点,连结,因为是等腰直角三角形,所以,因为是直角梯形且,所以四边形为正方形,所以,所以平面,所以;第二问,先利用面面垂直,可得到线面垂直,得到锥体的高,用等体积法将转化为,再利用体积公式求值;第三问,先在面内找到线,这是由于// 平面,再利用相似三角形,得到边长的关系,所以,所以.
试题解析:(1)证明:取中点,连结
因为,所以
因为四边形为直角梯形,
所以四边形为正方形,所以
所以平面.    所以 .             4分
(2)由,面易得
所以,       8分
(3)解:连接交于点,面.
因为//平面,所以//
在梯形中,有相似,
可得
所以,               12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中,的中点,分别在线段上的动点,且,把沿折起,如下图所示,

(Ⅰ)求证:平面
(Ⅱ)当二面角为直二面角时,是否存在点,使得直线与平面所成的角为,若存在求的长,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,平面⊥平面是线段上一点,

(Ⅰ)证明:⊥平面
(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,点的中点.
(1) 证明:平面平面
(2) 求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图在棱长均为2的正四棱锥中,点中点,则下列命题正确的是(   )
A.,且直线到面距离为
B.,且直线到面距离为
C.不平行于面,且与平面所成角大于
D.不平行于面,且与平面所成角小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a和b是两条异面直线,下列结论正确的个数是(  )
(1) 过不在a、b上的任一点,可作一个平面与a、b都平行.
(2) 过不在a、b上的任一点,可作一条直线与a、b都相交.
(3) 过a可以并且只可以作一个平面与b平行.
(4) 过不在a、b上的任一点,可作一条直线与a、b都垂直.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案