精英家教网 > 高中数学 > 题目详情

(1)当时,上恒成立,求实数的取值范围;
(2)当时,若函数上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。
解:(1)由a=0,f(x)≥h(x)可得-mlnx≥-x,即 
,则f(x)≥h(x)在(1,+∞)上恒成立等价于.求得 
时;;当时, 
在x=e处取得极小值,也是最小值,
,故
(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根。
令g(x)=x-2lnx,则 
时,,当
g(x)在[1,2]上是单调递减函数,在上是单调递增函数。
 
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),∴只需g(2)<a≤g(3),
故a的取值范围是(2-2ln2,3-2ln3]
(3)存在m=,使得函数f(x)和函数h(x)在公共定义域上具有相同的单调性
,函数f(x)的定义域为(0,+∞)。
,则,函数f(x)在(0,+∞)上单调递增,不合题意;
,由可得2x2-m>0,解得x>或x<-(舍去)
时,函数的单调递增区间为(,+∞), 单调递减区间为(0,
而h(x)在(0,+∞)上的单调递减区间是(0,),单调递增区间是(,+∞)
故只需=,解之得m=
即当m=时,函数f(x)和函数h(x)在其公共定义域上具有相同的单调性
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

抛物线与直线的两个交点为,点在抛物弧上从运动,则使的面积最大的点的坐标为    _____   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题15分)已知函数图象的对称中心为,且的极小值为.
(1)求的解析式;
(2)设,若有三个零点,求实数的取值范围;
(3)是否存在实数,当时,使函数
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数.
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)已知定义在上的函数,其中为常数.
(1)若是函数的一个极值点,求的值;
(2)若函数在区上是增函数,求的取值范围;
(3)若函数,在处取得最大值,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,
则不等式的解集是
A.(-2,0) ∪(2,+∞)B.(-2,0) ∪(0,2) C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx+1在x=-与x=1时都取得极值。
(1)求a、b的值与函数f(x)的单调区间;
(2)求函数f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
已知二次函数 (,c为常数且1《c《4)的导函数的图象如图所示:

(1).求的值;
(2)记,求上的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(1)若的极值点,求a的值;
(2)若时,函数的图象恒不在的图象下方,求实数a的取值范围。

查看答案和解析>>

同步练习册答案