A. | f(0.32)<f(20.3)<f(log25) | B. | f(log25)<f(20.3)<f(0.32) | ||
C. | f(log25)<f(0.32)<f(20.3) | D. | f(0.32)<f(log25)<f(20.3) |
分析 由对任意x1,x2∈(-∞,0),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,可知f(x)在(-∞,0)上是减函数,又由f(x)是R上的偶函数可得f(x)在(0,+∞)上是增函数,从而可得结论.
解答 解:∵对任意x1,x2∈(-∞,0),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
∴f(x)在(-∞,0)上是减函数,
又∵f(x)是R上的偶函数,∴f(x)在(0,+∞)上是增函数,
∵0.32<20.3<log25
∴f(0.32)<f(20.3)<f(log25).
故选:A.
点评 本题考查了函数的性质的综合应用,特别要注意的是对任意x1,x2∈(-∞,0),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,表达了f(x)在(-∞,0)上是减函数,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{25}{2}$ | B. | -5 | C. | $\frac{25}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com