【题目】如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,
其中恒成立的为( )
A. ①③ B. ③④ C. ①④ D. ②③
【答案】A
【解析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN.
(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直.
详解:
如图所示,连接AC、BD相交于点O,连接EM,EN.
对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.
对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;
对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.
对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.
故选:A.
科目:高中数学 来源: 题型:
【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点, , , 分别在棱, , , 上,水面恰好过点, , , ,且.
(1)证明: ;
(2)若底面水平放置时,求水面的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式|x+1|+|x﹣1|<4的解集为M.
(1)设Z是整数集,求Z∩M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=3sinx+2cosx+1.若实数a,b,c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则 的值为( )
A.﹣1
B.
C.1
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块正方形菜地 , 所在直线是一条小河,收货的蔬菜可送到 点或河边运走。于是,菜地分为两个区域 和 ,其中 中的蔬菜运到河边较近, 中的蔬菜运到 点较近,而菜地内 和 的分界线 上的点到河边与到 点的距离相等,现建立平面直角坐标系,其中原点 为 的中点,点 的坐标为(1,0),如图
(1)求菜地内的分界线 的方程
(2)菜农从蔬菜运量估计出 面积是 面积的两倍,由此得到 面积的“经验值”为 。设 是 上纵坐标为1的点,请计算以 为一边、另一边过点 的矩形的面积,及五边形 的面积,并判断哪一个更接近于 面积的经验值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( )
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2 .
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com