精英家教网 > 高中数学 > 题目详情
动圆C与定圆C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求动圆圆心C的轨迹方程.
设所求圆的圆心坐标C(x,y),半径为r,
两定圆的圆心分别是C1,C2,半径分别为3,1.
∵所求圆与两个圆都外切,
∴|CC1|=r+3,|CC2|=r+1,
即|CC1|-|CC2|=2,
根据双曲线定义可知C点的轨迹为以C1,C2为焦点的双曲线的右支,
由2c=6,c=3;2a=2,a=1,∴b=
9-1
=2
2

∴C点的轨迹方程为x2-
y2
8
=1
(x≥1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆O′:(x-1)2+y2=36,点A(-1,0),M是圆上任意一点,线段AM的中垂线l和直线O′M相交于点Q,则点Q的轨迹方程为(  )
A.
x2
9
-
y2
8
=1
B.
x2
8
+
y2
9
=1
C.
x2
9
+
y2
8
=1
D.
x2
8
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过原点O的椭圆有一个焦点F(0,4),且长轴长2a=10,求此椭圆的中心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若M、N为两个定点且|MN|=6,动点P满足
PM
PN
=0,则P点的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则点P的轨迹方程是(  )
A.8x2+8y2+2x-4y-5=0B.8x2+8y2-2x-4y-5=0
C.8x2+8y2-2x+4y-5=0D.8x2+8y2+2x+4y-5=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面上动点P到点F(1,0)的距离等于它到直线x=-1的距离.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点M(4,0)的直线与点P的轨迹交于A,B两点,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一动圆和直线l:x=-
1
2
相切,并且经过点F(
1
2
,0)

(Ⅰ)求动圆的圆心θ的轨迹C的方程;
(Ⅱ)若过点P(2,0)且斜率为k的直线交曲线C于M(x1,y1),N(x2,y2)两点.
求证:OM⊥ON.

查看答案和解析>>

同步练习册答案