精英家教网 > 高中数学 > 题目详情
在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )
A.B.C.D.
A

试题分析:由题意画出图形,取BC的中点D,连接AD与ED,因为三棱柱ABC-A1B1C1中,底面是正三角形,侧棱AA1⊥底面ABC,所以平面BCC1B1⊥平面ABC,点E是侧面BB1CC1的中心,所以ED⊥BC,AD⊥BC,所以AD⊥平面EBC,∠AED就是直线AE与平面BB1CC1所成角,∵AA1=3AB,∴,所以∠AED=30°,即直线与平面所成角
点评:本题考查直线与平面垂直的判断方法,直线与平面所成角的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不重合的平面,给出下列命题:
①若,则           ②若 ;      
③若 ;   ④若;   
其中正确命题的个数为                   (      )                                                  
A.1个    B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(      )
A.若mα,nβ,m∥n,则α∥β
B.若n⊥α,n⊥β,m⊥β,则m⊥α
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若α⊥β,n⊥β,m⊥n,则m⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l垂直平面a,垂足为O.在矩形ABCD中AD=1,AB=2,若点A在l上移动,点 B在平面a上移动,则O、D两点间的最大距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,边上的高,,沿翻折,使得,得到几何体

(1)求证:
(2)求与平面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图在长方体中,其中分别是的中点,则以下结论中

垂直;        ②⊥平面
所成角为; ④∥平面
不成立的是(   )
A.②③  B.①④ C.③  D.①②④

查看答案和解析>>

同步练习册答案