精英家教网 > 高中数学 > 题目详情
在△ABC中,
求证:(1)sin2A+sin2B+sin2C=2+2cosAcosBcosC;
(2)cos2A+cos2B+cos2C=1-2cosAcosBcosC.
分析:(1)将sin2B+sin2C移到另一侧和2联立用三角函数的基本关系化成角B、C的余弦,进而再根据A=π-B-C将cosA化为角B、C的关系即可证.
(2)根据C=π-B-A将cosC化为角B、A的关系即可证.
解答:证明:(1)要证sin2A+sin2B+sin2C=2+2cosAcosBcosC成立
即证sin2A=2-sin2B-sin2C+2cosAcosBcosC成立
又因为2-sin2B-sin2C+2cosAcosBcosC=cos2B+cos2C+2cos(π-B-C)cosBcosC
=cos2B+cos2C-2cos(B+C)cosBcosC=cos2B+cos2C-2(cosBcosC-sinBsinC)cosBcosC
=cos2B+cos2C-2cos2Bcos2C+2sinBsinCcosBcosC
=(cos2B-cos2Bcos2C)+(cos2C-cos2Bcos2C)+2sinBsinCcosBcosC
=cos2Bsin2C+cos2Csin2C+2sinBsinCcosBcosC
=(cosBsinC+cosCsinC)2
=sin2(B+C)=sin2(π-A)=sin2A
即证.
(2)cosC=cos[π-(A+B)]=cos(A+B)=cosAcosB-sinAsinB
左边=cos2A+cos2B+cos2Acos2B+sin2Asin2B-2cosAcosBsinAsinB
=cos2A+cos2B+cos2Acos2B+(1-cos2A)(1-cos2B)-2cosAcosBsinAsinB
=1-2[cos2Acos2B-cosAcosBsinAsinB]
=1-2cosAcosB(cosAcosB-sinAsinB)
=1-2cosAcosBcos(A+B)
=1-2cosAcosBcos[π-(A+B)]
=1-2cosAcosBcosC=右边
即证.
点评:本题主要考查三角函数的基本关系式.这里要注意的试在三角形中三个角的和为π,经常通过一个角等于π减另外两个角来转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,求证:
a
b
-
b
a
=c(
cosB
b
-
cosA
a
).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,求证:
1+cosA-cosB+cosC
1+cosA+cosB-cosC
=tan
B
2
cot
C
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,求证sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin
B-C
2
sin
C-A
2
sin
A-B
2

查看答案和解析>>

科目:高中数学 来源:2012年北师大版高中数学必修5 2.1正余弦定理练习卷(解析版) 题型:解答题

在△ABC中,求证:a2sin2B+b2sin2A=2absinC

 

查看答案和解析>>

同步练习册答案