精英家教网 > 高中数学 > 题目详情
(2008•成都二模)如图,已知边长为2的正三角形ABC中线AF与中位线DE相交于点G,将此三角形沿DE折成二面角A1-DE-B,设二面角A1-DE-B的大小为θ,则当异面直线A1E与BD的夹角为60°时,cosθ的值为(  )
分析:由△ABC为等边三角形,AF为中线,知AF⊥BC.由DE为中位线,知BC∥DE,DE⊥AG,且DE⊥GF,故∠A1GF是二面角A1-DE-B的平面角,即∠A1GF=θ.由正△ABC的边长为2,知AE=BD=1,A1G=GF=
1
2
AF=
3
2
,由异面直线A1E与BD的夹角为60°,知∠A1EF=60°,A1F=1,由cosθ=
A1G2+GF2-A1F2
2A1G•GF
能求出cosθ的值.
解答:解:∵△ABC为等边三角形,AF为中线
∴AF⊥BC
又∵DE为中位线,∴BC∥DE
∴AF⊥DE
即DE⊥AG,且DE⊥GF
∵沿着DE翻折
∴DE⊥A1G
∵DE⊥AG,DE⊥GF,A1G∩AG=G
∴DE⊥平面A1GF
∴A1G⊥DE,FG⊥DE,
∴∠A1GF是二面角A1-DE-B的平面角,
即∠A1GF=θ.
∵正△ABC的边长为2,
∴AE=BD=1,A1G=GF=
1
2
AF=
3
2

连接EF,∵AE=EC=1,BF=FC=1,
∴EF
.
.
BD,
∵异面直线A1E与BD的夹角为60°,
∴∠A1EF=60°,
∴△A1EF是边长为1的等边三角形,
∴A1F=1,
cosθ=
A1G2+GF2-A1F2
2A1G•GF

=
3
4
+
3
4
-1
3
2
×
3
2

=
1
3

故选D.
点评:本题考查二面角的余弦值的求法,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•成都二模)已知P是椭圆
x2
4
+
y2
3
=1上的一点,F1、F2是该椭圆的两个焦点,若△PF1F2的内切圆半径为
1
2
,则
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知全集U,集合A、B为U的两个非空子集,若“x∈A”y与“x∈B”是一对互斥事件,则称A与B为一组U(A,B),规定:U(A,B)≠U(B,A).当集合U={1,2,3,4,5}时,所有的U(A,B)的组数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)已知函数f(x)=cos(x+θ),θ∈R,若
lim
x→0
f(π+x)-f(π)
x
=1,则函数f(x)的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)化简
sin(60°+θ)+cos120°sinθ
cosθ
的结果为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都二模)过抛物线x2=2y上两点A(-1,
1
2
)、B(2,2)分别作抛物线的切线,两条切线交于点M.
(1)求证:∠BAM=∠BMA;
(2)记过点A、B且中心在坐标原点、对称轴为坐标轴的双曲线为C,F1、F2为C的两个焦点,B1、B2为C的虚轴的两个端点,过点B2作直线PQ分别交C的两支于P、Q,当
PB1
QB1
∈(0,4]时,求直线PQ的斜率k的取值范围.

查看答案和解析>>

同步练习册答案