精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
已知函数
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);
(Ⅲ)求证:对任意正数,恒有

(Ⅰ)极大值为.(Ⅱ);(Ⅲ)见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分) 
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.     (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)已知
(I)如果函数的单调递减区间为,求函数的解析式;
(II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程;
(III)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,试比较的大小;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品.
(Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?  
(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为
(Ⅰ)求的值;(Ⅱ)求函数的单调递增区间.
(Ⅲ)求函数上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题12分)
已知函数上为单调递增函数.
(Ⅰ)求实数的取值范围;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步练习册答案