精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线,曲线为参数), 以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)若射线)分别交两点, 的最大值.

【答案】见解析

【解析】(1C1ρ(cosθsinθ)4

C2的普通方程为(x1)2y21,所以ρ2cosθ …………………4分

2)设A(ρ1α)B(ρ2α),则ρ1ρ22cosα

所以×2cosα(cosαsinα) …………………8分

(cossin1)

[cos(2α)1]

α时,取得最大值 (1) …………………10分

【命题意图】本题考查直线与圆的极坐标方程,两角差的余弦公式,三角函数最值的求法,意在考查学生分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】节能减排以来,兰州市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)估计用电量落在[220,300)中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱中,底面为矩形,平面平面====2,的中点.

(Ⅰ)求证:

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R且满足不等式组 ,当k=1时,不等式组所表示的平面区域的面积为 , 若目标函数z=3x+y的最大值为7,则k的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.

(Ⅰ)求角A的值;

(Ⅱ)sin Bcos C的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在人们都注重锻炼身体,骑车或步行上下班的人越来越多,某学校甲、乙两名教师每天可采用步行、骑车、开车三种方式上下班,步行到学校所用时间为1小时,骑车到学校所用时间为0.5小时,开车到学校所用时间为0.1小时,甲、乙两人上下班方式互不影响.设甲、乙步行的概率分,骑车的概率分别为.

(1) 求甲、乙两人到学校所用时间相同的概率;

(2) 设甲、乙两人到学校所用时间和为随机变量,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为原点,离心率,其中一个焦点的坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)当点在椭圆上运动时,设动点的运动轨迹为若点满足: 其中上的点.直线的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案