精英家教网 > 高中数学 > 题目详情

【题目】我市某机构调查小学生课业负担的情况,设平均每人每天做作业时间为X(单位:分钟),按时间分下列四种情况统计:①0~30分钟;②30~60分钟;③60~90分钟;④90分钟以上,有1000名小学生参加了此项调查,如图是此次调查中某一项的程序框图,其输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是( )

A. 0.20B. 0.80C. 0.60D. 0.40

【答案】D

【解析】

首先要理清ST的含义,S是用来计算作业时间大于60的人数,T则用来核算输入的数据有没有达到1000个,理清了含义,就可以得出作业时长不大于60的人数,从而解题。

解:首先理清ST的含义,

S是用来计算作业时间大于60的人数,

T则用来核算输入的数据有没有达到1000

因为输出S的值为600

所以作业时间大于60的总人数为600人,

则作业时间不大于60的人数为400人,

所以平均每天做作业时间在0~60分钟内的学生的频率是0.4

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1,DAC中点且直线AB1与平面BCC1B1所成的角为300,则异面直线AB1BD所成角的大小为 ( )

A. 300

B. 450

C. 600

D. 900

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)记f(x)= ,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)的导函数,讨论的零点个数;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求样本中心点坐标;

(2)已知两变量线性相关,求y关于t的线性回归方程;

(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数与一定范围内的温度有关,现收集了该种药用昆虫的6组观测数据如下表:

温度

21

23

24

27

29

32

产卵数/个

6

11

20

27

57

77

(1)若用线性回归模型,求关于的回归方程(精确到0.1);

(2)若用非线性回归模型求的回归方程为,且相关指数

①试与(1)中的线性回归模型相比,用说明哪种模型的拟合效果更好.

②用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).

附:一组数据,其回归直线的斜率和截距的最小二乘估计为;相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|<2x+1的解集为{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)设关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,两个正方形ABCDADEF所在平面互相垂直,设MN分别是BDAE的中点,那么CDEMN,CE异面其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若函数有两个极值点,且.

①求的取值范围;

②求证:.

查看答案和解析>>

同步练习册答案