【题目】我市某机构调查小学生课业负担的情况,设平均每人每天做作业时间为X(单位:分钟),按时间分下列四种情况统计:①0~30分钟;②30~60分钟;③60~90分钟;④90分钟以上,有1000名小学生参加了此项调查,如图是此次调查中某一项的程序框图,其输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是( )
A. 0.20B. 0.80C. 0.60D. 0.40
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱ABC-A1B1C1中,D是AC中点,且直线AB1与平面BCC1B1所成的角为300,则异面直线AB1与BD所成角的大小为 ( )
A. 300
B. 450
C. 600
D. 900
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)记f(x)= ,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求样本中心点坐标;
(2)已知两变量线性相关,求y关于t的线性回归方程;
(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数与一定范围内的温度有关,现收集了该种药用昆虫的6组观测数据如下表:
温度 | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数/个 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用线性回归模型,求关于的回归方程(精确到0.1);
(2)若用非线性回归模型求关的回归方程为,且相关指数
①试与(1)中的线性回归模型相比,用说明哪种模型的拟合效果更好.
②用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).
附:一组数据,其回归直线的斜率和截距的最小二乘估计为;相关指数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式|x+3|<2x+1的解集为{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)设关于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求实数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么;面CDE;;MN,CE异面其中正确结论的序号是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com