精英家教网 > 高中数学 > 题目详情
8.若曲线y=ax2+$\frac{b}{x}$(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线2x-7y+3=0垂直,则a+b的值等于-3.

分析 由曲线y=ax2+$\frac{b}{x}$(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线2x-7y+3=0垂直,可得y|x=2=-5,且y′|x=2=-$\frac{7}{2}$,解方程可得答案.

解答 解:∵直线2x-7y+3=0的斜率k=$\frac{2}{7}$,
∴切线的斜率为-$\frac{7}{2}$,
曲线y=ax2+$\frac{b}{x}$(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线2x-7y+3=0垂直,
∴y′=2ax-$\frac{b}{{x}^{2}}$,
∴$\left\{\begin{array}{l}{4a+\frac{b}{2}=-5}\\{4a-\frac{b}{4}=-\frac{7}{2}}\end{array}\right.$,
解得:a=-1,b=-2,
故a+b=-3,
故答案为:-3

点评 本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=-5,且y′|x=2=-$\frac{7}{2}$,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N
(Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=(x-1)2-1的值域为[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在数列{an}中,an-1=2an,若a5=4,则a4a5a6=64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“对任意x∈R,都有f(x)≤0”的否定是(  )
A.对任意x∈R,都有f(x)>0B.存在x∈R,使f(x)>0
C.存在x∈R,使f(x)≥0D.对任意x∈R,都有f(x)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)当a=2时,求函数f(x)的极值;
(2)若对任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=2x2-2x-3有以下4个结论:
①定义域为R,
②递增区间为[1,+∞)
③是非奇非偶函数;
④值域是[$\frac{1}{16}$,∞).
其中正确的结论是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{c}$|=$\sqrt{19}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.60°B.45°C.30°D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(理)已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$(2,\sqrt{2})$.
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若${K_{AC}}•{K_{BD}}=-\frac{b^2}{a^2}$.
(i) 求$\overrightarrow{OA}•\overrightarrow{OB}$的最值;
(ii) 求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案