已知f(x)=ax3+bx2+cx(a≠0)在x=1和x=-1时取得极值,且f(1)=-1.
(1)试求常数a、b、c的值;
(2)试求f(x) 的单调区间;
(3)试判断x=±1时函数取极小值还是极大值,并说明理由.
解:(1)∵f(x)=ax
3+bx
2+cx(a≠0)在x=1和x=-1时取得极值
∴f′(1)=f′(-1)=0,
∴3a+2b+c=0,①3a-2b+c=0.②
又f(1)=-1,∴a+b+c=-1.③
由①②③解得a=
,b=0,c=-
.
(2)f(x)=
x
3-
x,∴f′(x)=
(x-1)(x+1).
令f′(x)>0,可得x<-1或x>1;令f′(x)<0,可得-1<x<1.
∴函数的单调增区间为(-∞,-1),(1,+∞),单调减区间为(-1,1)
(3)由(2)知,函数的单调增区间为(-∞,-1),(1,+∞),单调减区间为(-1,1)
∴x=-1时,f(x)有极大值;x=1时,f(x)有极小值.
分析:(1)求导函数,利用极值点必为f′(x)=0的根建立起由极值点x=±1所确定的相关等式,运用待定系数法确定a、b、c的值.
(2)求导函数,并分解因式,讨论x的取值决定f′(x)的正负,从而可得函数的增减性单调区间;
(3)利用函数的单调性,可确定函数的极值.
点评:本题考查学生利用导数研究函数极值的能力,以及用待定系数法求函数解析式的能力,考查学生的计算能力.