精英家教网 > 高中数学 > 题目详情
1.过点A(2,1),且与直线x+2y-1=0垂直的直线方程为(  )
A.x+2y-4=0B.x-2y=0C.2x-y-3=0D.2x+y-5=0

分析 设要求的直线方程为:2x-y+m=0,把点A(2,1)代入解得m即可得出.

解答 解:设要求的直线方程为:2x-y+m=0,
把点A(2,1)代入可得:4-1+m=0,解得m=-3.
可得要求的直线方程为:2x-y-3=0,
故选:C.

点评 本题考查了直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{\sqrt{1-x}}$的定义域为(  )
A.(0,1]B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且过点$(-\sqrt{3},2\sqrt{3})$的双曲线的标准方程是$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{\frac{15}{4}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个袋子里装有红、黄、绿三种颜色的球各2个,这6个球除颜色外完全相同,从中摸出2个球,则这2个球中至少有1个是红球的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若关于x的方程$f(x)=\frac{1}{2}x+m$恰有三个不相等的实数解,则m的取值范围是$(0,\frac{9}{16})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,平面PAC⊥平面ABC,PA=PC=BA=BC,则直线PB与平面PAC所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设动点P到定点F(0,$\frac{1}{4}$)的距离与它到直线y=-$\frac{1}{4}$的距离相等,
(1)求动点P的轨迹C的方程;
(2)过(-2,0)的直线l与轨迹C交于M,N两点,又过M,N作轨迹C的切线l1,l2,当l1⊥l2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.第4届世界杯于1950年在巴西举行,此后每4年举行一次,那么将在俄罗斯举行的2018年世界杯是第21届.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点P是抛物线y2=4x上动点,F为抛物线的焦点,将向量$\overrightarrow{FP}$绕点F按顺时针方向旋转90°到$\overrightarrow{FQ}$
(Ⅰ)求Q点的轨迹C的普通方程;
(Ⅱ)过F倾斜角等于$\frac{π}{4}$的直线l与曲线C交于A、B两点,求|FA|+|FB|的值.

查看答案和解析>>

同步练习册答案