ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C£º+=1(a£¾b£¾0)µÄ×ó¡¢ÓÒÁ½¸ö½¹µã.

£¨1£©ÈôÍÖÔ²CÉϵĵãA£¨1,£©µ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£¬Ð´³öÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê.

£¨2£©ÉèµãKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µã£¬ÇóÏ߶ÎF1KµÄÖеãµÄ¹ì¼£·½³Ì.

£¨3£©ÒÑÖªÍÖÔ²¾ßÓÐÐÔÖÊ£ºÈôM¡¢NÊÇÍÖÔ²CÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½¸öµã£¬µãPÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صĶ¨Öµ£¬ÊÔд³öË«ÇúÏß=1¾ßÓÐÀàËÆÌØÐÔµÄÐÔÖʲ¢¼ÓÒÔÖ¤Ã÷.

·ÖÎö:ÓÉÒÑÖªÌõ¼þ¿Éд³öÍÖÔ²·½³Ì¼°´úÈë·¨Çó¹ì¼££¬±¾Ìâ²»ÊÇÖ±½ÓÖ¤Ã÷ÍÖÔ²ÖеÄÐÔÖÊ£¬¶øÊÇÀàËƵØת»¯µ½Ë«ÇúÏßÖÐÖ¤Ã÷Ë«ÇúÏß¾ßÓеÄÐÔÖÊ,ÓÃбÂʹ«Ê½¼°Ë«ÇúÏß·½³Ì¼´¿ÉµÃÖ¤.

½â:£¨1£©ÍÖÔ²CµÄ½¹µãÔÚxÖáÉÏ£¬ÓÉÍÖÔ²ÉϵĵãAµ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍÊÇ4£¬µÃ2a=4£¬¼´a=2.

ÓÖµãA£¨1£¬£©ÔÚÍÖÔ²ÉÏ£¬Òò´Ë+=1,b2=3.

¡àc2=a2-b2=1.

¡àÍÖÔ²CµÄ·½³ÌΪ+=1,½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©.

(2)ÉèÍÖÔ²CÉϵĶ¯µãΪK(x1,y1)£¬Ï߶ÎF1KµÄÖеãQ£¨x,y£©Âú×ãx=,y=,

¡àx1=2x+1,y1=2y.

¡à+=1,¼´£¨x+£©2+=1ΪËùÇóµÄ¹ì¼£·½³Ì.

£¨3£©ÀàËƵÄÐÔÖÊΪ£ºÈôM¡¢NÊÇË«ÇúÏß=1ÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½¸öµã£¬µãPÊÇË«ÇúÏßÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صĶ¨Öµ.ÉèµãMµÄ×ø±êΪ£¨m,n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m,-n£©£¬ÆäÖÐ=1.

ÓÖÉèµãPµÄ×ø±êΪ£¨x,y£©£¬ÓÉkPM=,

kPN=,µÃkPM¡¤kPN=¡¤=.

½«y2=x2-b2,n2=m2-b2,´úÈëµÃkPM¡¤kPN=.

ÂÌɫͨµÀ

    Àà±È¶¨ÒåºÍÐÔÖÊÊÇÖÐѧÊýѧÖÐ×î³£¿¼²éµÄÒ»ÀàÎÊÌ⣬ËüÄܺܺõØÅàÑøѧÉú̽Ë÷ÎÊÌâµÄÄÜÁ¦£¬Ó¦¸Ã¸øÓè×ã¹»µÄÖØÊÓ.ÓÐÐËȤµÄͬѧҲ¿ÉÖ¤Ã÷ÍÖÔ²¾ßÓеÄÐÔÖÊ.Àà±ÈÊÇÑо¿Ô²×¶ÇúÏßµÄÒ»ÖÖ·½·¨.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2·Ö±ðΪÍÖC£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬ÍÖÔ²CÉϵĵãA(1£¬
3
2
)
µ½Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©ÉèµãPÊÇ£¨¢ñ£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µãQ(0.
1
2
)
Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÉèF1£¬F2·Ö±ðΪÍÖC£ºÊýѧ¹«Ê½£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬ÍÖÔ²CÉϵĵãÊýѧ¹«Ê½µ½Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©ÉèµãPÊÇ£¨¢ñ£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µãÊýѧ¹«Ê½Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸