精英家教网 > 高中数学 > 题目详情

【题目】某公司为了解用户对其产品的满意度,从AB两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区:

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地区:

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):

)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分

低于70

70分到89

不低于90

满意度等级

不满意

满意

非常满意

记事件C“A地区用户的满意度等级高于B地区用户的满意度等级,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。

【答案】1)见解析 (20.48

【解析】)两地区用户满意度评分的茎叶图如下

通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.

)记表示事件:“A地区用户满意度等级为满意或非常满意

表示事件:“A地区用户满意度等级为非常满意

表示事件:“B地区用户满意度等级为不满意

表示事件:“B地区用户满意度等级为满意

独立, 独立, 互斥,

由所给数据得发生的概率分别为.故

,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的单调递增区间;

(2)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线与椭圆交于点轴上方),且.设点轴上的射影为,三角形的面积为2(如图1.

1)求椭圆的方程;

2)设平行于的直线与椭圆相交,其弦的中点为.

①求证:直线的斜率为定值;

②设直线与椭圆相交于两点轴上方),点为椭圆上异于一点,直线于点于点,如图2,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.

(1)求曲线 的直角坐标方程;

(2)设为曲线上的点, 为曲线上的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)若函数上为减函数,求实数的取值范围;

(2)令,已知函数,若对任意,总存在 ,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018贵州遵义市高三上学期第二次联考设抛物线的准线与轴交于,抛物线的焦点为,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设

)求抛物线的方程和椭圆的方程;

)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)若从第345组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第345组各抽取多少名志愿者?

2)在(1)的条件下,该市决定在第34组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步练习册答案