精英家教网 > 高中数学 > 题目详情
sin163°•sin223°+sin253°•sin313°=
 
分析:先利用诱导公式把原式的各项化简后,然后利用两角和的正弦函数公式及特殊角的三角函数值即可求出原式的值.
解答:解:sin163°•sin223°+sin253°•sin313°
=sin(180°-17°)•sin(270°-47°)+sin(270°-17°)•sin(360°-47°)
=sin17°(-cos47°)+(-cos17°)(-sin47°)
=sin47°cos17°-cos47°sin17°
=sin(47°-17°)
=sin30°=
1
2

故答案为:
1
2
点评:此题考查学生灵活运用诱导公式及两角和与差的正弦函数公式化简求值,学生做题时应注意角度的灵活变换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:cos(
π
6
-α)=
3
3
,则sin2(α-
π
6
)-cos(
6
+α)
的值为
2+
3
3
2+
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2
x
2
+
π
12
)+
3
sin(
x
2
+
π
12
)cos(
x
2
+
π
12
)一
1
2

(1)在△ABC中,若sinC=2sinA,B为锐角且有f(B)=
3
2
,求角A,B,C;
(2)若f(x)(x>0)的图象与直线y=
1
2
交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项和,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)在△ABC中,设a、b、c分别为角A、B、C的对边,S为△ABC的面积,且满足条件4sinB•sin2
π
4
+
B
2
)+cos2B=1+
3

(Ⅰ)求∠B的度数;
(Ⅱ)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与x轴正半轴的交点,△AOB为等腰直角三角形,记∠AOC=α.
(1)求A点的坐标为(
3
5
4
5
),求
sin2α+sin2α
cos2α+cos2α
的值;
(2)求|BC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线l与曲线C分别交于M,N.

(1)写出曲线C和直线L的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

同步练习册答案