精英家教网 > 高中数学 > 题目详情
9.已知${({x+a})^2}{({2x-\frac{1}{x}})^5}$的展开式中不含x3的项,则a=±1.

分析 先求得二项式展开式的通项公式,求得含x3项的系数,于是可是得到关于a的方程解得即可.

解答 解:${({x+a})^2}{({2x-\frac{1}{x}})^5}$=x2(2x-$\frac{1}{x}$)5+2ax(2x-$\frac{1}{x}$)5+a2(2x-$\frac{1}{x}$)5,其中含x3的项的系数为:${2}^{3}{C}_{5}^{2}-{2}^{4}{a}^{2}{C}_{5}^{1}$=80-80a2=0,所以a=±1.
故答案为:±1.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)是定义在实数集R上的不恒为零的偶函数,且xf(x+1)=(x+1)f(x)对任意实数x恒成立,则$f[f(\frac{5}{2})]$的值是(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0≤φ<π,函数$f(x)=\frac{{\sqrt{3}}}{2}cos(2x+φ)+{sin^2}x$.
(Ⅰ)若$φ=\frac{π}{6}$,求f(x)的单调递增区间;
(Ⅱ)若f(x)的最大值是$\frac{3}{2}$,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.
(1)求证:AC⊥B1C;  
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=-8x中,以(-1,1)为中点的弦所在的直线方程为4x+y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)将参数方程转化为普通方程:$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.({θ为参数})$
(2)求椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的参数方程:
①设x=3cosφ,φ为参数;
②设y=2t,t为参数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线ax+by+1=0(a、b>1)过圆x2+y2+8x+2y+1=0的圆心,则$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数$f(x)=2sin(\frac{π}{3}x+\frac{π}{2})$,若对任意x都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}中,已知对任意自然数n,a1+a2+a3+…+an=2n,则a12+a22+a32+…+an2=(  )
A.$\frac{1}{3}$(4n-1)B.$\frac{1}{3}$(2n-1)C.4n-1D.$\frac{1}{3}$(4n+8)

查看答案和解析>>

同步练习册答案