精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的两个焦点分别为,且椭圆C过点P3,2

求椭圆C的标准方程;

与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

【答案】1 2 6

【解析】

试题分析:由题意设椭圆方程为,利用椭圆定义求得,结合隐含条件求得,则椭圆方程可求;求出,设与直线平行的直线方程为联立直线和椭圆方程,运用韦达定理和判别式大于,以及弦长公式,点到直线的距离公式和三角形的面积公式,结合基本不等式即可得到所求最大值.

试题解析解:设椭圆的方程为

由题意可得

解得

故椭圆的方程为

直线方程为,设直线方程为

将直线的方程代入椭圆的方程并整理得

,即时,

所以

到直线的距离

面积的最大值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),

1)求曲线处的切线方程;

2)讨论函数的极小值;

3)若对任意的,总存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ, .

证明:

时,求点C到平面APQB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某初级中学有三个年级,各年级男、女人数如下表:

初一年级

初二年级

初三年级

女生

370

200

男生

380

370

300

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

(1)求的值;

(2)用分层抽样的方法在初三年级中抽取一个容量为5的样本,求该样本中女生的人数;

(3)用随机抽样的方法从初二年级女生中选出8人,测量它们的左眼视力,结果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把这8人的左眼视力看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.

若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;

商店记录了50天该商品的日需求量单位:件,整理得下表:

日需求量n

8

9

10

11

12

频数

10

10

15

10

5

假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;

若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求PA的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的单调区间;

)求证:

曲线上的所有点都落在圆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式,并写出推理过程;

(2)令,试比较的大小,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, ,AB=2CD=8.

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;

(2)当M点位于线段PC什么位置时,PA∥平面MBD?

查看答案和解析>>

同步练习册答案