精英家教网 > 高中数学 > 题目详情

【题目】设直线l:y=2x﹣1与双曲线)相交于A、B两个不

同的点,且(O为原点).

(1)判断是否为定值,并说明理由;

(2)当双曲线离心率时,求双曲线实轴长的取值范围.

【答案】(1)见解析;(2)

【解析】

(1)为定值5.将直线y=2x﹣1与双曲线的方程联立,运用韦达定理和向量数量积的坐标表示,化简整理即可得到定值;

(2)运用双曲线的离心率公式和(1)的结论,解不等式即可得到所求实轴的范围.

(1)为定值5.

理由如下:y=2x﹣1与双曲线联立,

可得(b2﹣4a2)x2+4a2x﹣a2﹣a2b2=0,(b≠2a),

即有△=16a4+4(b2﹣4a2)(a2+a2b2)>0,

化为1+b2﹣4a2>0,设A(x1,y1),B(x2,y2),

则x1+x2=,x1x2=,由(O为原点),可得

x1x2+y1y2=0,即有x1x2+(2x1﹣1)(2x2﹣1)=5x1x2﹣2(x1+x2)+1=0,

即5﹣2+1=0,

化为5a2b2+a2﹣b2=0,即有=5,为定值.

(2)由双曲线离心率时,

即为,即有2a2<c2<3a2

由c2=a2+b2,可得a2<b2<2a2,即

=5,可得﹣5<,化简可得a<

则双曲线实轴长的取值范围为(0,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面上的三点P(5,2)、F1(-6,0)、F2(6,0).

(1)求以F1F2为焦点且过点P的椭圆的标准方程

(2)设点PF1F2关于直线yx的对称点分别为P′、F1′、F2′,求以F1′、F2为焦点且过点P的双曲线的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数存在单调递减区间,求实数的取值范围;

(Ⅱ)若,证明: ,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣2,0),B(0,1)在椭圆C: (a>b>0)上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)P是线段AB上的点,直线y= x+m(m≥0)交椭圆C于M、N两点,若△MNP是斜边长为 的直角三角形,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 满足| |=| |=1, = ,若向量 满足| + |≤1,则| |的最大值为(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别是角A、B、C的对边,若A满足2cos2A+cos(2A+ )=﹣
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面积为3 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x)为减函数,且函数y=f(x﹣1)的图象关于点(1,0)对称,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,则x﹣b的取值范围是(
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率为,并过点.

(1)求椭圆方程;

(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点。求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,已知a1=1,an+1=2Sn+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 =3n﹣1,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案