精英家教网 > 高中数学 > 题目详情
下列函数中,既是奇函数又是减函数的是(  )
A、y=
1-2x
1+2x
B、y=-tanx
C、y=
1
x
D、y=-x3(-1<x≤1)
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:根据函数奇偶性 单调性的性质分别进行判断即可.
解答: 解:A.f(-x)=
1-2-x
1+2-x
=
2x-1
1+2x
=-
1-2x
1+2x
=-f(x),则函数为减函数,
f(x)=
1-2x
1+2x
=
2-(1+2x)
1+2x
=
2
1+2x
-1,则函数f(x)为减函数,满足条件.
B.y=-tanx在定义域上不是单调函数,
C.y=
1
x
在定义域上不是单调函数,
D.定义域关于原点不对称,为非奇非偶函数,
故选:A
点评:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把一个周长为18cm的长方形围成一个圆柱.
(1)求圆柱的体积V(x)关于圆柱底面周长x的函数,并指出定义域;
(2)当圆柱的体积V(x)最大时,求圆柱的底面周长与高的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(-x2+2x+8)的单调递减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=32x-(k+1)3x-2,当x∈[1,+∞]时,f(x)恒为正值,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰Rt△ABC中,过直角顶点C作一条直线与边AB交与点D,AD≥AC的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+x2
是定义在(-1,1)上的函数.
(Ⅰ)判断函数f(x)的奇偶性(不需证明);
(Ⅱ)用定义法证明函数f(x)在(-1,1)上是增函数;
(Ⅲ)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,n>0,nx+y=1,
1
x
+
4
y
的最小值为16,则n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|log2(x+2)>1},B={x|(
1
2
x
1
4
},则A∩∁RB=(  )
A、(2,+∞)
B、[2,+∞)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),直线l:x=-1,P为平面上一动点,设直线PA的斜率为k1,直线PB的斜率k2,且k1•k2=-1,过P作l的垂线,垂足为Q,则△APQ面积的最大值为
 

查看答案和解析>>

同步练习册答案