精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
3
4
-
1
2
sinxcosx-
3
2
sin2
x,将其图象向左移
π
4
个单位,并向上移
1
2
个单位,得到函数f(x)=acos2(x+φ)+b(a>0,b∈R,|φ|≤
π
2
)
的图象.
(1)求实数a,b,φ的值;
(2)设函数φ(x)=g(x)-
3
f(x),x∈[0,
π
2
]
,求函数φ(x)的单调递增区间和最值.
分析:(1)利用二倍角的三角函数以及两角和的正弦函数,通过函数的图象变换,利用变换后的是的表达式,求实数a,b,φ的值;
(2)求出函数φ(x)=g(x)-
3
f(x),x∈[0,
π
2
]
的表达式,利用正弦函数的单调增区间求出函数的单调增区间,通过增区间求解函数的最值.
解答:解:(1)依题意g(x)=
3
4
-
1
2
sinxcosx-
3
2
sin2
x=
3
4
cos2x-
1
4
sin2x
=
1
2
sin(
π
3
-2x)

g(x)=
1
2
sin(
π
3
-2x)
,将其图象向左移
π
4
个单位,并向上移
1
2
个单位,得:
f(x)=
1
2
sin(
π
3
-2(x+
π
4
))+
1
2
=
1
2
sin(-2x-
π
6
)+
1
2
=
1
2
cos(2x+
3
)+
1
2
=cos2(x+
π
3
)

∵f(x)=acos2(x+φ)+b
∴a=1,b=0
(2)φ(x)=g(x)-
3
f(x)
=
1
2
sin(2x+
3
)-
3
2
cos(2x+
3
)-
3
2

=sin(2x+
π
3
)-
3
2

由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,
解得:x∈[kπ-
12
,kπ+
π
12
]
,k∈Z
x∈[0,
π
2
]

∴φ(x)的单调增区间为[0,
π
12
]

当x=
π
12
时,函数的最大值为:1-
3
2

当x=
π
2
时,函数的最小值为:-
3

函数的值域为:[-
3
,1-
3
2
]
点评:本题考查三角函数的化简求值,两角和与差的三角函数以及二倍角公式的应用,正弦函数的单调性与函数的最值,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3-|x|,g(x)=x2-4x+3,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),则F(x)在[-3,3](  )
A、有最大值3,最小值-1
B、有最大值7-2
7
,无最小值
C、有最大值3,无最小值
D、无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:函数f(x)=x+
a
x
是奇函数;
(2)已知函数g(x)=x+
1
x
在区间(0,1)上是单调减函数,在区间(1,+∞)上是单调增函数;函数g(x)=x+
4
x
在区间(0,2)上是单调减函数,在区间(2,+∞)上是单调增函数;猜想出函数g(x)=x+
b2
x
,(b>0),x∈(0,+∞)的单调区间;
(3)指出函数h(x)=x+
8
x
,x∈(-∞,0)在什么时候取最大值,最大值是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
+1,h(x)=
1
x+3
,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)•h(x).
(1)求函数f(x)的表达式,并求其定义域;
(2)当a=
1
4
时,求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=-x2-3,f(x)为二次函数.当x∈[-1,2]时,f(x)的最小值为1,且f(x)+g(x)是奇函数,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
12
mx2-2x+l+ln(x+l)(m≥1).
(1)若曲线C:y=g(x)在点P(0,1)处的切线l与曲线C有且只有一个公共点,求m的值;
(2)求证:函数g(x)存在单凋减区间[a,b];
(3)若c=b-a,求c的取值范围.

查看答案和解析>>

同步练习册答案