精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求曲线处的切线方程;

2)函数在区间上有零点,求的值;

3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.

【答案】(1);(2);(3)

【解析】

1)根据导数几何意义求出切线斜率,由解析式求得切点坐标,从而得到切线方程;(2)由导数可得函数单调性,利用零点存在性定理可判断出上有零点,从而得到结果;(3)整理出,可知的两根,从而得到;根据的范围可确定的范围后,将两式代入进行整理;构造函数,利用导数可求得函数的最小值,该最小值即为的最大值.

1)由题意得:

曲线处切线为:,即

2)由(1)知:

时,;当时,

上单调递减,在上单调递增

由零点存在定理知:上有一个零点

上单调递增 该零点为上的唯一零点

3)由题意得:

的两个极值点,即为方程的两根

,又,解得:

上单调递减

即实数的最大值为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程及直线的直角坐标方程;

(2)已知点为曲线上的动点,当点到直线的距离最大时,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数满足任意都有的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,底面是等腰三角形,且,侧面 是菱形,,平面平面,点的中点.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,平面的中点,是线段上的一点,且.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,

①求曲线在点处的切线方程;

②求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若,其中为自然对数的底数,求证:函数有2个不同的零点;

(3)若对任意的恒成立,求实数的最大值.

查看答案和解析>>

同步练习册答案