精英家教网 > 高中数学 > 题目详情

若P是边长为2的正三角形ABC边BC上的动点,则数学公式的值恒为________

6
分析:画出图形,作出以向量为对角线的平行四边形,设出图中的比例关系,表示出向量,然后计算,注意两个比例系数之和为1,可求得数量积为定值.
解答:解:如图P是边长为2的正三角形ABC边BC上的动点,
过P作EP∥AB,交AC于E,FP∥AC交AB于F,
设m=,n=,由于ABC是正三角形,
所以 m+n=1.
所以=
=
=
=6(m+n)
=6.
故答案为:6.
点评:本题考查平面向量数量积的含义与物理意义,考查学生发现问题解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)证明:P-ABC为正四面体;
(2)若PD=PA=
12
求二面角D-BC-A的大小;(结果用反三角函数值表示)
(3)设棱台DEF-ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年上海卷)(16分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)     证明:P-ABC为正四面体;

(2)     若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)

(3)     设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直

平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造

出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届广东实验中学高二上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)求证:P-ABC为正四面体;

(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。

(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:四川省遂宁市08-09学年高二下学期期末试卷(理) 题型:选择题

 底面边长为2的正三棱锥P-ABC中,EBC的中点,若△PAE的面积为,则侧棱PA与底面所成角的正切值是

A.1                B.               C.               D.

 

查看答案和解析>>

科目:高中数学 来源:四川省绵阳市08-09学年高二下学期期末教学质量测试(理) 题型:选择题

 底面边长为2的正三棱锥P-ABC中,EBC的中点,若△PAE的面积为,则侧棱PA与底面所成角的正切值是

A.1                B.               C.               D.

 

查看答案和解析>>

同步练习册答案