精英家教网 > 高中数学 > 题目详情

【题目】已知空间几何体中,均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面.

(1)试在平面内作一条直线,使直线上任意一点的连线均与平面平行,并给出详细证明;

(2)求直线与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】

(1)如图所示:取BC和BD的中点H、G,连接HG.HG为所求直线.证明平面AHG||平面CDE,

原题即得证;(2)以CD中点O为坐标原点,OD所在直线为x轴,OB所在直线为Y轴,OE所在直线为Z轴,建立空间直角坐标系,利用向量法求直线与平面所成角的正弦值.

如图所示:取BC和BD的中点H、G,连接HG.HG为所求直线.

所以,

因为平面平面,

所以

取CD中点O,连接EO,

因为平面平面

所以

所以AH||EO,又平面CDE,平面CDE,

所以.

因为,

所以,

因为,

所以直线HG上任意一点的连线均与平面平行.

(2)以CD中点O为坐标原点,OD所在直线为x轴,OB所在直线为Y轴,OE所在直线为Z轴,建立空间直角坐标系.,

所以.

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为我们将其结论推广:椭圆的点处的切线方程为在解本题时可以直接应用,已知直线与椭圆E有且只有一个公共点.

1)求的值;

2)设O为坐标原点,过椭圆E上的两点AB分别作该椭圆的两条切线,且交于点M

①设,直线ABOM的斜率分别为,求证:为定值;

②设,求OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;

(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;

(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方法,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)

年龄

频数

10

30

30

20

5

5

赞成人数

9

25

24

9

2

1

(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在调查的人中各随机选取1人进行追踪调查,求选中的2人中赞成“使用微信交流”的人数恰好为1人的概率.

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过A53),B44)两点,且圆心在x轴上.

1)求圆C的标准方程;

2)若直线l过点(52),且被圆C所截得的弦长为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆上任意一点,,线段的垂直平分线与半径交于点,当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)记曲线轴交于两点,是直线上任意一点,直线与曲线的另一个交点分别为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五边形中,四边形为长方形,为边长为的正三角形,将沿折起,使得点在平面上的射影恰好在上.

(Ⅰ)当时,证明:平面平面

(Ⅱ)若,求平面与平面所成二面角的余弦值的绝对值.

查看答案和解析>>

同步练习册答案