精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,平面,底面为直角梯形,
(Ⅰ)求异面直线所成角的大小;
(Ⅱ)求直线与平面所成角的正切值;
(Ⅲ)求三棱锥的体积.
(1)45o;(2);(3).
本试题主要是考查了空间中四棱锥中异面直线所成的角,以及线面角的求解和棱锥的体积的综合运用试题。可以建立直角坐标系,向量法来解,也可以运用几何性质来求解。
解:(Ⅰ)∵
异面直线所成角是∠SDA或其补角
平面平面
在Rt△SAD中, ∵,∠SDA=45o
异面直线所成角的大小为45o.
(Ⅱ)又∵ 在平面上的射影,∠CSB是与底面所成角  
在Rt△CSB中tan∠CSB=与底面所成角的正切值为
(Ⅲ)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中, AB=1,
∠ABC=60.
(1)证明:
(2)求二面角A——B的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知。求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,点分别是的中点,平面.已知
(Ⅰ)证明:平面
(Ⅱ)求异面直线所成的角;
(Ⅲ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和直线,下列命题中真命题是(   )
A.若,则
B.若
C.若,则
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面四边形的对角线交于点,且.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果OA//OA,OB//OB,那么AOB和AOB (   )
A.相等B.互补C.相等或互补D.大小无关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分) 如图(1)在等腰中,D,E,F分别是AB,AC和BC边的中点,,现将沿CD翻折成直二面角A-DC-B.(如图(2))
        
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但APDE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是平面,是直线,则下列命题正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案