精英家教网 > 高中数学 > 题目详情
已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2
2
,E为CC1的中点,则直线BE与AC1所成角的余弦值为(  )
A、
2
4
B、
6
6
C、
2
2
D、
6
3
考点:异面直线及其所成的角
专题:空间角
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线BE与AC1所成角的余弦值.
解答: 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
由已知得B(2,2,0),E(0,2,
2
),
A(2,0,0),C1(0,2,2
2
),
BE
=(-2,0,
2
),
AC1
=(-2,2,2
2
),
|cos<
BE
AC1
>|=|
4+0+4
6
16
|=
6
3

∴直线BE与AC1所成角的余弦值为
6
3

故选:D.
点评:本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知lnx=2+ln(
2
x
),求x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=x2-2x+2,-1≤x≤2},B={x|
2x-7
x-3
>1}},若任取x∈A,则x∈A∩B的概率为(  )
A、
2
3
B、
1
3
C、
3
4
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合{(x,y)|
2x+y-4≤0
x+y≥0
x-y≥0
}表示的平面区域为Ω,在区域Ω内任取一点P(x,y),若点P的坐标满足不等式y≤kx的概率为
2
3
,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是(  )
A、0<θ<
π
2
B、0<θ≤
π
2
C、0≤θ≤
π
3
D、0<θ≤
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinx,若将f(x)的图象先沿x轴向左平移
π
6
个单位,再将所得图象上所有点横坐标不变,纵坐标伸长为原来的4倍,最后将所得图象上所有点横坐标缩短为原来的一半,纵坐标不变,得到函数g(x)的图象.
(1)求函数g(x)的解析式;
(2)求函数g(x)的单调区间;
(3)设函数h(x)=g(x)-k(∈[-
π
2
π
2
])的零点个数为m,试求m关于k的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输出结果是a=341,那么判断框内应填的条件为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

A(1,1,-1),B(2,2,2),C(3,2,4),则△ABC面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2
ln|x|
的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案