精英家教网 > 高中数学 > 题目详情
已知定义在(0,+∞)的单调函数f(x)满足:对任意正数x,都有f[f(x)-
1
x
]=2,则f(
1
5
)=(  )
分析:设f(x)-
1
x
=t,利用换元法将函数转化为f(x)=
1
x
+t
,且f(t)=2,然后根据方程条件求出t的值,进而求出函数的表达式即可求值.
解答:解:设f(x)-
1
x
=t>0.
则f(x)=
1
x
+t
,且f(t)=2,
令x=t,
则f(t)=t+
1
t
=2,
即t2-2t+1=(t-1)2=0,
解得t=1,
∴f(x)=
1
x
+1

∴f(
1
5
)=5+1=6,
故选:B.
点评:本题主要考查函数求值问题,利用换元法求出函数表达式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x),对一切x、y>0,恒有f(x+y)=f(x)+f(y)成立,且x>0时,f(x)<0.
(1)求证:f(x)在(0,+∞)上是减函数.
(2)f(2)=-
12
时,解不等式f(ax+4)>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在区间[0,1]上的函数y=f(x)的图象如图所示,对于满足0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x2)-f(x1)>x2-x1
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f (
x1+x2
2
).
其中正确结论的序号是
 
(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x)=
(4k-1)ln
1
x
,x∈(0 , e]
kx2-kx,x∈(e , +∞)
是增函数
(1)求常数k的取值范围
(2)过点(1,0)的直线与f(x)(x∈(e,+∞))的图象有交点,求该直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的三个函数f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1处取得极值.
(Ⅰ)求函数g(x)在x=2处的切线方程;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点个数,并说明理由.
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.
作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.

查看答案和解析>>

同步练习册答案