精英家教网 > 高中数学 > 题目详情
在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:
先改写第k项:k(k+1)=
由此得1×2-.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,
其结果是_________________.(结果写出关于一次因式的积的形式)

试题分析:先改写第k项:
由此得


……

相加,得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

1955年,印度数学家卡普耶卡(D.R.Kaprekar)研究了对四位自然数的一种交换:任给出四位数,用的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t(这个数称为Kaprekar变换的核).通过研究10进制四位数2014可得Kaprekar变换的核为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何中有如下结论:若正三角形ABC的内切圆面积为,外接圆面积为,则.推广到空间几何体中可以得到类似结论:若正四面体ABCD的内切球体积为,外接球体积为,则=___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数组:记该数组为:,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面是按照一定规律画出的一列“树型”图:

设第个图有个树枝,则之间的关系是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列满足公差,,且数列中任意两项之和也是该数列的一项.若,则的所有可能取值之和为_________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列等式:

照此规律, 第n个等式可为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}满足a1=2,an+1 (n∈N*),则a3=________,a1·a2·a3·…·a2007=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
以上的式子中,类比得到的结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案