精英家教网 > 高中数学 > 题目详情

如图:四棱锥V-ABCD中,底面ABCD是边长为2的正方形,

其他四个侧面都是侧棱长为的等腰三角形,则二面角V-ABC

的平面角为       

 

【答案】

  60

【解析】解:取AB、CD的中点E、F,连接VE、EF、VF

∵VA=VB=∴△VAB为等腰三角形∴VE⊥AB

又∵ABCD是正方形,则BC⊥AB、∵EF∥BC

∴EF⊥AB∵EF∩VE=E∴∠VEF为二面角V-AB-C的平面角∵△VAB≌△VDC∴VE=VF=2

EF=BC=2∴△VEF为等边三角形

∴∠VEF=60°

即二面角V-AB-C为60°

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它侧面都是侧棱长为
5
的等腰三角形,求二面角V-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)如图,四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD三角形,平面VAD⊥底面ABCD,设AB=2
(I)证明:AB⊥平面VAD;
(II)求二面角A-VD-B的正切值;
(III) E是VA上的动点,当面DCE⊥面VAB时,求三棱锥V-ECD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)如图,四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ASCD.设AB=2.
(I)证明:AB⊥平面VAD;
(II)若E是VA上的动点,当面DCE⊥面VAB时,求三棱锥V-ECD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它侧面都是侧棱长为的等腰三角形,求二面角V-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源:2012年河南省新乡、许昌、平顶山高考数学一模试卷(理科)(解析版) 题型:解答题

如图,四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD三角形,平面VAD⊥底面ABCD,设AB=2
(I)证明:AB⊥平面VAD;
(II)求二面角A-VD-B的正切值;
(III) E是VA上的动点,当面DCE⊥面VAB时,求三棱锥V-ECD的体积.

查看答案和解析>>

同步练习册答案