分析 利用向量三角形法则、向量共线定理即可得出.
解答 解:如图所示,
∵CB=2AC,∴$\overrightarrow{AC}$=$\frac{1}{3}\overrightarrow{AB}$.
$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{AC}$=$\overrightarrow{OA}$+$\frac{1}{3}\overrightarrow{AB}$=$\overrightarrow{OA}+\frac{1}{3}(\overrightarrow{OB}-\overrightarrow{OA})$=$\frac{2}{3}\overrightarrow{a}$+$\frac{1}{3}\overrightarrow{b}$.
点评 本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{9}{2}$ | B. | 6 | C. | $\frac{15}{2}$ | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,4] | B. | [$\frac{19}{17}$,4] | C. | [1,$\frac{11}{3}$] | D. | [$\frac{19}{17}$,$\frac{11}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,则$\vec b=\overrightarrow c$ | |
B. | 若$\overrightarrow a•\overrightarrow b=0$,则$\vec a=\vec 0$或$\vec b=\vec 0$ | |
C. | 若不平行的两个非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=|\overrightarrow b|$,则$(\overrightarrow a+\overrightarrow b)•(\overrightarrow a-\overrightarrow b)=0$ | |
D. | 若$\overrightarrow a$与$\overrightarrow b$平行,则$\overrightarrow a•\overrightarrow b=|\overrightarrow a|•|\overrightarrow b|$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com